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ABSTRACT 

We developed a T+M hydraulic fracturing simu-
lator by coupling a flow simulator with a geo-
mechanics code. Modeling of the vertical frac-
ture development involves continuous updating 
of the boundary conditions and of the connectiv-
ity data. This T+M simulator can model the ini-
tial fracture development during hydraulic frac-
turing operations, after which the domain de-
scription changes from single continuum to dou-
ble or multiple continua, in order to rigorously 
model both flow and geomechanics. The T+H 
simulator allows explicit description of nonline-
ar permeability and geomechanical moduli, pro-
vides two-way coupling between fluid and heat 
flow and geomechanics, and continuously tracks 
changes in the fracture(s) and in the pore volume, 
and fully accounts for leak-off in all directions 
during hydraulic fracturing. 

1. INTRODUCTION 

Hydraulic fracturing is widely used in reservoir 
engineering applications to increase production 
by enhancing permeability. In particular, gas 
production in shale/tight gas reservoirs typically 
hinges on hydraulic fracturing because of the 
extremely low permeability of such reservoirs. 
 
Several studies to develop algorithms for cou-
pled simulation have been made in reservoir en-
gineering. Ji et al. (2009) developed a numerical 
model for hydraulic fracturing, considering cou-
pled flow and geomechanics, in which the algo-
rithm is based on a dynamic update of the 
boundary condition along the fracture plane, 
fundamentally motivated by node splitting. In 
addition, Nassir et al. (2012) incorporated shear 
failure into a hydraulic fracturing model. Dean 
and Schmidt (2008) employed the same fractur-
ing algorithm as Ji et al. (2009), while using dif-
ferent criteria for tensile failure. Fu et al. (2011) 
used the node-splitting method when material 

undergoes tensile failure. The method by Ji et al. 
(2009) exclusively considers vertical fracturing, 
but allows the fracturing algorithm to be imple-
mented easily to the finite element method, 
changing the boundary conditions and data con-
nectivity. Furthermore, it can easily couple flow 
and geomechanics, accounting for leak-off of the 
proppants to the reservoirs. On the other hand, 
Fu et al. (2011) developed a method that is not 
restricted to vertical fracturing, but using this 
method for 3D fracturing problems causes con-
siderable complexity in code development, and 
modification of the data connectivity is also 
challenging compared to Ji et al.’s (2009) algo-
rithm. Moreover, the Fu et al. (2011) method 
only allows flow along gridblocks, so the leak-
off of proppants to gridblocks cannot properly 
be considered. 
 
For the aforementioned issues related to hydrau-
lic fracturing, we have developed an algorithm 
similar to that of Ji et al. (2009). We address 
shear failure by implementing the Drucker-
Prager and Mohr-Coulomb models, considering 
coupled flow and geomechanics affecting pore 
volume and permeability for the multiple porosi-
ty model.  

2. MATHEMATICAL FORMULATION 

2.1. Governing Equation 
Hydraulic fracturing requires the combined 
modeling of coupled fluid and heat flow and 
geomechanics. The governing equation for fluid 
flow is as follows.  
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where superscript k  indicates the fluid compo-
nent. dtd /)(!  refers to the time derivative of a 
physical quantity )(!  relative to the motion of 
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the solid skeleton. km  is the mass of component 
k . kf , and kq are its flux and source terms on 
the domain !  with boundary ! , where n  is 
the normal vector of the boundary. 
 
The mass of component k  is written as 
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where subscript J indicates fluid phases. !  is the 
true porosity, defined as the ratio of the pore 
volume to the bulk volume in the deformed con-
figuration. JS , J! , and k

JX  are saturation and 
density of phase J, and the mass fraction of 
component k  in phase J. 
 
The mass flux term is obtained from  
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where k
Jw  and k

Jf are the convective and diffu-
sive mass flows of component k in phase J, re-
spectively.  For the liquid phase, J=L, k

Jw can 
be given by Darcy’s law as 
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where k is the absolute (intrinsic) permeability 
tensor. The terms Jµ , rJk , Jp are the viscosity, 
relative permeability, and pressure of the fluid 
phase J, respectively. g  is the gravity vector, 
and Grad is the gradient operator. Note that, 
depending on the circumstances, other, more 
flow equations may be appropriate, such as the 
Forchheimer equation (Forchheimer, 1901) that 
incorporates laminar, inertial and turbulent ef-
fects. 
 

For the gaseous phase, J=G, k
Gw is given by 
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where Kk  is the Klinkenberg factor. The diffu-
sive flow can be written as 
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where k
JD  and G! are the hydrodynamic disper-

sion tensor and gas tortuosity, respectively.  
 
The governing equation for heat flow comes 
from heat balance, as 
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where the superscript H  indicates the heat 
component. Hm , Hf , and Hq are heat, its flux, 
and source terms, respectively. The term Hm  is 
the heat accumulation term, and is expressed as 
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where R! , RC , T , and 0T  are the density and 
heat capacity of the porous medium, temperature, 
and reference temperature, respectively. The 
heat flux is written as 
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where HK  is the composite thermal conductivi-
ty tensor of the porous media. The specific in-
ternal energy, Je , and enthalpy, Jh , of compo-
nents k in phase J become, respectively 
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The governing equation for geomechanics is 
based on the quasi-static assumption (Coussy 
1995), written as  

0gDiv! =+ b! ,                                          (11) 

where Div is the divergence operator, ! is the 
total stress tensor, and b!  is the bulk density. 
The infinitesimal transformation is used to allow 
the strain tensor, ! , to be the symmetric gradi-
ent of the displacement vector, u ,  
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where Grad is the gradient operator. The 
boundary conditions for the geomechanical 
problems are as follows; , given displace-
ment, on a boundary !u, and , traction 

on a boundary !t, where  , the 
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boundary over the domain, and . The 
initial total stress satisfies the mechanical equi-
librium with the boundary conditions. We may 
take a larger domain than a reservoir in order to 
determine geomechanics and heat transport more 
accurately. 
 
Remark 1. Note that the boundary conditions for 
a given mathematical model in hydraulic fractur-
ing are not prescribed but rather dependent on 
geomechanical solutions (i.e., nonlinearity). 
Conventional plastic mechanics, such as Mohr-
Coulomb failure, results in material nonlinearity, 
while the boundary conditions are still pre-
scribed (Simo and Hughes, 1998; Wang et al., 
2004). On the other hand, the geomechanics of 
hydraulic tensile fracturing in this study does not 
yield material nonlinearity while nonlinearity 
lies in the boundary condition (Ji et al., 2009). 

2.2. Constitutive relations 
Gas flow within homogeneous rock can be mod-
eled using single porosity poromechanics, ex-
tended from Biot’s theory (Coussy, 1995). How-
ever, when failure occurs and fractures are cre-
ated, we have local heterogeneity because frac-
tures and rock matrix coexist. In this case, we 
use double or multiple porosity models, which 
allow local heterogeneity. In particular, for sin-
gle phase flow, the constitutive equations are 
written as follows (Berryman, 2002, Kim et al., 
2012). 
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where the subscript l indicates a material (sub-
element) within a gridblock.  The terms drK  and 

upC  are the upscaled elastoplastic drained bulk 
and tangent moduli at the level of the gridblock, 
respectively, and *

lb  and *~
lb  are the coupling 

coefficients. lb , lb
~ , drK ,  1

,
!
mlL are written as 

,
0

0
  ,

  ,3~  ,

1

,

!
"

#
$
%

&
==

'='=

'(
MM

ff

l l

l
dr

llTl
l

ll
l

N
N

K
K

b
K

b

)

))

)*
)*

L
      (15) 

where l! , lT ,! , l! ,  and lK  are the Biot coef-
ficient, thermal dilation coefficient, volume frac-
tion, and drained bulk modulus for material l, 
respectively.  The term )(, L!mlL  represents the 
Biot modulus matrix of the double porosity 
model (e.g., the fracture-rock matrix system), 
where fN and MN are the inverse of the Biot 

moduli, fM and MM , for the fracture and rock 

matrix media, respectively, (i.e., ff MN /1=
and MM MN /1= ). The subscripts f and M in-
dicate the fracture and rock matrix. mlD , is the 
coupling coefficient between fluid flow and heat 
flow. 
 
For naturally fractured reservoirs, the double 
porosity model is used initially, while, in this 
study, we change the single porosity model into 
a double porosity during simulation when a ma-
terial fails. Thus, for the naturally fractured res-
ervoirs, upC  and drK  on the level of a gridblock 
are obtained from an upscaling of given fracture 
and rock matrix material properties. The return 
mapping for elastoplasticity is performed at all 
the subelements (Kim et al., 2012).  
 

On the other hand, in this study, upC  and drK  
are directly obtained from the elastoplastic tan-
gent moduli at a gridblock (global) level, not the 
subelements, while we need to determine the 
drained bulk moduli of fracture and rock matrix 
materials for the double porosity model, fol-
lowed by the coupling coefficients. To this end, 
we assume that the rock matrix has the same 
drained bulk modulus as that of the single poros-
ity material before plasticity (i.e., elasticity), 
because the rock matrix is undamaged (Kim and 
Moridis, 2012a). Then, from Eq. 153, the drained 
bulk modulus of the fracture can be determined 
by   
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Considering drK  and fK to be positive for well-
posedness, the volume fraction of the fracture, 
f! , has the constraint as 

dr

M
f K

K
!>1" .                                               (17)  

2.3. Failure and Fracturing 
We consider two types of failure in geomaterials: 
tensile and shear failure. 

2.3.1. Tensile failure 
We use the tensile failure condition for large-
scale fracture propagation, as follows. 

                   
'n cT! "  ,                                     (18) 

where 'n!  is the effective stress normal to the 

plane of a potential fracture, and cT is the tensile 
strength of a material. The tensile strength is 
determined from a tension test such as the Bra-
zilian test. For a given geomechanical loading, 
the boundary condition for geomechanics is 
modified when the tensile effective stress reach-
es the tensile failure condition. In other words, 
the internal natural (Neumann) boundary condi-
tions are introduced at the areas where the ten-
sile effective stress satisfies the condition of the 
tensile failure (Eq. 18).  
 
Remark 2. The geomechanics status at early time 
when tensile fracturing occurs is assumed to ex-
ist in undrained condition, with the exception of 
adding surface loads at the boundary conditions 
(i.e., traction due to fracturing). The traction 
normal to the fracture surface, , can be deter-

mined as . Here, at the early time, we set 

to be the initial reservoir pressure, which 
implies that the pressure at the fracture is locally 
equilibrated with the surroundings. On the other 
hand, after the early time,  changes due to 
flow of the proppants. 

2.3.2. Shear failure 
For shear failure, we use the Drucker-Prager and 
Mohr-Coulomb models, which are widely used 
to model the failure of cohesive frictional mate-
rials. The Drucker-Prager model of this study is 
expressed as  
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where I1 is the first invariant of the effective 
stress and J2 is the second invariant of the effec-
tive deviatoric stress. f  and g  are the yield 
and plastic potential functions, respectively. The 
Mohr-Coulomb model is given as 
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where ',',' 321 !!!  are, respectively, the maxi-
mum, intermediate, and minimum principal ef-
fective stresses, where tensile stress is positive. 

f!  and d!  are the friction and dilation angles, 

respectively. hc  is the cohesion. 

3. NUMERICAL MODELING 

We developed the T+M hydraulic fracturing 
simulator by coupling the LBNL in-house simu-
lator TOUGH+RealGasH2O (for the description 
of nonisothermal flow of water and real gas mix-
ture through porous/fractured media) with the 
ROCMECH in-house geomechanics simulator.  
Below, we describe the numerical algorithms 
and characteristics of the coupled simulator. 

3.1. Discretization 
Space discretization is based on the integral fi-
nite difference method (a finite volume tech-
nique) in the simulation of flow and heat flow 
(TOUGH+RealGasH2O code), and the finite 
element method in the geomechanical compo-
nent of the coupled simulations (ROCMECH 
code). Time discretization in both constituent 
components of T+M is based on the standard 
backward method that is typically employed in 
reservoir simulations.  

3.2. Failure Modeling 

3.2.1. Tensile failure and node splitting 
We introduce the new internal Neumann bound-
aries by splitting nodes, and assign the traction 
from the fluid pressure inside the fractures. 

ft

f ft p=
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fp
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Node splitting is performed based on the physi-
cal tensile strength. In this study, the focus is on 
vertical tensile fracturing. Because of symmetry, 
we extend the numerical simulation capabilities 
to 3D domains. Then, the fracture plane is locat-
ed at the outside boundary (Ji et al., 2009).    

3.2.2. Shear failure and elastoplasticity 
We use classical elastoplastic return-mapping 
algorithms for the Mohr-Coulomb and Drucker-
Prager models (Simo and Hughes, 1998). Unlike 
for tensile fracturing, we account for shear fail-
ure with no assumption of a certain fracturing 
direction. The Drucker-Prager model provides a 
simple closed analytical formulation for return 
mapping because it is associated only with I1 
and J2. However, the Mohr-Coulomb model also 
takes J3, and thus the return mapping is not 
straightforward, as it is in the Drucker-Prager 
model.  
 
For the Mohr-Coulomb model, we employ the 
two-stage return mapping algorithm proposed by 
Wang et al. (2004) after slight modifications. In 
the return mapping of the Mohr-Coulomb model 
at the edges of the failure envelope, we also em-
ploy the Drucker-Prager model with explicit 
treatment of J3 to avoid numerical instability. 
According to Kim and Moridis (2012a), the ad-
justed Drucker-Prager model for the Mohr-
Coulomb model (i.e., explicit treatment of J3) 
can also simulate the Mohr-Coulomb failure ac-
curately.  

3.3. Sequential Implicit Approach 
There are two typical methods for solving cou-
pled problems: fully coupled and sequential im-
plicit. The fully coupled method usually pro-
vides unconditional and convergent numerical 
solutions for mathematically well-posed prob-
lems. The price for these important advantages 
is that it requires a unified flow-geomechanics 
simulation, which results in enormous software 
development effort and large computational 
costs.  
 
On the other hand, the sequential implicit meth-
od uses existing simulators for the solution of 
the constituent subproblems. For example, the 
problem of nonisothermal flow, or of geome-
chanics, is solved implicitly, fixing certain geo-
mechanical (or flow) variables, and then geome-

chanics (or flow) is solved implicitly from the 
flow/geomechanics variables obtained from the 
previous step. According to Kim et al. (2011), 
the fixed stress sequential scheme provides un-
conditional stability and numerical convergence 
with high accuracy. Using the fixed-stress split 
method, we can solve the flow problem, fixing 
the total stress field. This scheme can easily be 
implemented in flow simulators by using the 
Lagrange’s porosity function and correction 
term, as follows. 
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where nnn )()()( 1 !"!=!# + . v!  is the total volu-
metric mean stress. !  is defined as the ratio of the 
pore volume in the deformed configuration to the 
bulk volume in the reference (initial) configuration. 
The porosity correction term, 1/ !" n

vllb #$ , is cal-
culated from geomechanics, which corrects the po-
rosity estimated from the pore compressibility. 
 
For permeability of the fracture, we use the following 
nonlinear permeability motivated by the cubic law.  
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where fpk ,  and ! are the fracture permeability and 

its width, respectively. 0
, fpk is a reference fracture 

permeability for a reference width 0! . pn character-
izes the nonlinear fracture permeability. When 

0.3=pn , Eq. 23 is identical to the cubic law. 
 
For Young’s modulus of the fracture, we use a much 
low value, compared with the rock matrix, when ten-
sile fracturing occurs. For shear failure, the return 
mapping algorithm automatically determines geome-
chanical properties such as Eq. 16. 

4. NUMERICAL EXAMPLES 

Here we first show a verification test, and then 
discuss a numerical example of hydraulic frac-
turing induced in a shale gas reservoir. A de-
tailed discussion of this problem can be found in 
Kim and Moridis (2012b). 
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4.1. Verification 
We use an analytical solution proposed by 
Sneddon and Lowengrud (1969) that can calcu-
late the width of a fracture in 2D plane stain me-
chanics (Figure 1), written as 
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where ofpp !"= . E , and ! are Young’s 

modulus and Poisson’s ratio, respectively, fp
and o! are fluid pressure within the fracture and 
total stress normal to the fracture plane, respec-
tively. lx /  is the normalized distance from the 
reference point within the fracture, as shown in 
Figure 2. Figure 2 shows that the numerical so-
lution matches the analytical solution, validating 
the simulator. 
 

 
 
Figure 1. Schematics of a fracture in the 2D plane 

stain mechanics (Detournay, 2004)  

 

Figure 2. Comparison between the analytical and 
numerical solutions. The numerical solu-
tion matched the analytical solution.  

4.2. 3D vertical fracture propagation 
We assume the fracturing fluid to be water. We 
consider 3D coupled flow and geomechanical 
problems with constant injection rate. The geo-
mechanical domain has 50, 5, 50 gridblocks in 
the x, y and z directions, respectively, with the 
x-z plane normal to the minimum compressive 
principal total stress. Gridblock sizes are uni-
form, i.e., !x = !z = 3 m in the x and z direc-
tions, respectively. The size of the gridblocks in 
the y direction is non-uniform; 0.1 m, 0.5 m 3.0 
m, 10.0 m, 20.0 m.  
 
Young’s modulus and Poisson’s ratio are 6 GPa 
and 0.3, respectively. The tensile strength of ma-
terial for the reference case is 4.0 MPa. Initial 
fluid pressure is 17.10 MPa at 1350 m in depth 
with the 12.44 kPa/m gradient. Initial tempera-
ture is 58.75 oC at 1350 m in depth with the 
0.025 oC/m gradient. Initial total principal 
stresses are -26.21 MPa, and -23.30 MPa, and -
29.12 MPa at 1350 m depth in x, y, z directions, 
respectively, where the corresponding stress 
gradients are -19.42 kPa/m, -17.59 kPa/m, and -
21.57 kPa/m, respectively. We set gravity based 
on a bulk density of 2200 kg/m3, with no hori-
zontal displacement boundary conditions at the 
sides (except at the fracture nodes), and no dis-
placement boundary at the bottom.  
 
For flow, we have, respectively, 50, 6, and 50 
gridblocks in x, y, and z directions, where one 
more layer for the fracture plane is introduced 
for flow within the fracture. The initial permea-
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bility and porosity of the shale reservoir are 
21910648.8 m!" = 71076.8 !" Darcy, and 0.1. For 

tensile failure, the fracture permeability is de-
termined from Eq. 23, where 2110

, 109.5 mk fp
!"=  

(60 Darcy), m30 100.1 !=" , and 0.3=pn . For 
shear failure, we use a constant permeability, 

214109.5 m!" (60 mD). Once failure occurs, we 
change the single porosity to the double porosity 
model where fracture and rock matrix volume 
fractions are 0.1 and 0.9. The reference fracture 
porosity is 0.9, when the fracture is created, and 
the porosity varies after the creation due to 
poromechanical effects. Biot’s coefficient is 1.0. 
We specify a constant injection rate of 8.0kg/s at 
x=25 m, z=-1440 m. 
 
Figure 3 shows the fracture propagation during 
hydraulic fracturing. At the initial time, we have 
small fracturing. After the initial fracturing, the 
fracture propagates and becomes larger because 
of proppant injection within the fracture, which 
induces additional geomechanical loading to the 
fracture surface, followed by fracturing. 
 
We then perform another numerical test, in 
which 06.28=!=! df  and 0.2=hc  MPa, for 
shear failure as well as tensile failure. From Fig-
ure 4 (and comparing it to Figure 3), we find that 
shear failure limits the fracture propagation in 
vertical direction. Shear failure propagates hori-
zontally, and the overall failure occurs not only 
vertically but also horizontally. Flow of the 
proppants to the horizontal direction is substan-
tial, compared to the case without shear failure, 
because shear failure also increases permeability 
considerably.  
 

 
Figure. 3. Fracture propagation from tensile failure 

with of the constant injection rate of 
8.0kg/s at x=25 m, z=-1440 m. The frac-
ture propagation is stable and can be con-
trolled by injection time. 

 

 

 
Figure. 4. Fracture propagation with 

06.28=!=! df  and 0.2=hc  MPa. 
Top: the vertical fracture propagation due 
to tensile failure. Bottom: the areas of 
shear failure, where the number indicates 
failed Gauss points. Shear failure pro-
ceeds more horizontally, limiting the ver-
tical fracture propagation. 

SUMMARY 

We developed the T+M hydraulic fracturing 
simulator by coupling the 
TOUGH+RealGasH2O flow simulator with the 
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ROCMECH geomechanics code. T+M has the 
following characteristics: (1) vertical fracturing 
is mainly modeled by updating the boundary 
conditions and the corresponding data structure; 
(2) shear failure can also be modeled during the 
fracturing; (3) a double- or multiple-porosity 
approach is employed after the initiation of frac-
turing in order to rigorously model flow and ge-
omechanics; (4) nonlinear models for permeabil-
ity and geomechanical properties can be easily 
implemented; (5) leak-off in all directions dur-
ing hydraulic fracturing is fully considered; and 
(6) the code provides two-way coupling between 
fluid-heat flow and geomechanics, rigorously 
describing changes in the fractures, pore vol-
umes, and permeabilities. 
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